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Abstract:  

In a financial environment marked by increasing uncertainty and market complexity, the 

optimization of money management through stochastic control is emerging as a robust and 

adaptive approach to dynamic capital management. This article presents a comprehensive 

review of stochastic models commonly used to model financial asset dynamics, including 

geometric Brownian motion, jump processes and Lévy processes, as well as associated 

optimization methods such as expected utility maximization, risk minimization, and dynamic 

programming via the Hamilton-Jacobi-Bellman equation. 

We then illustrate the concrete application of these tools in several financial contexts: pension 

fund management, commodity trading companies and algorithmic investment strategies. The 

analysis highlights the advantages of stochastic approaches in terms of flexibility, adaptability 

and risk control, while discussing their practical and theoretical limitations. 

Finally, the article opens up promising perspectives towards the integration of machine learning 

techniques and environmental, social and governance (ESG) criteria for more efficient and 

responsible finance. 

Keywords: Stochastic control; Money management; Dynamic optimization; Jump models; 

Portfolio management. 
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Introduction 

In a financial environment characterized by uncertainty, complexity and volatility, rigorous 

capital management - or money management - is a key issue for institutional investors and 

algorithmic traders alike. Far from being a simple technique for adjusting positions, money 

management is now seen as a strategic lever for performance and risk control. 

At the same time, advances in financial mathematics have led to the emergence of powerful 

theoretical frameworks for decision-making in uncertain environments. Among these, 

stochastic control occupies a major place. Heir to optimal control theory and probabilistic 

modeling, it offers sophisticated tools for formulating, analyzing and solving dynamic 

optimization problems in random environments, such as those of the financial markets. 

The integration of stochastic control into the money management process enables the transition 

from a static logic to an adaptive management approach, where investment decisions are 

adjusted according to the continuous evolution of market conditions, regulatory constraints and 

the investor's objectives. In particular, this approach enables us to: 

- Formalize price dynamics using realistic stochastic models (geometric Brownian motion, 

jump processes, Lévy processes), 

- Optimize decisions through utility, risk or adjusted return functions, 

- Integrate operational constraints into a coherent mathematical framework, 

- Apply these methods in concrete contexts (pension funds, commodity trading, algorithmic 

strategies). 

The aim of this article is to provide a structured, in-depth overview of the application of 

stochastic control to money management. After presenting the main stochastic models used to 

model market dynamics, we introduce the associated optimization tools (utility maximization, 

risk minimization, dynamic programming, etc.), then illustrate their concrete application 

through several real-life, operational case studies. 

By combining mathematical rigor and practical relevance, this work aims to enlighten financial 

decision-makers, quantitative engineers and researchers on the benefits and limits of the 

stochastic approach applied to capital management in the era of complex markets and massive 

data. 
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1. Stochastic modeling of market dynamics 

Stochastic modeling is at the heart of quantitative finance. It provides a realistic representation 

of the random evolution of asset prices, taking into account continuous volatility, price jumps 

and the time structure of returns. Three main families of models can be distinguished: geometric 

Brownian motion (GBM), Lévy processes (with or without jumps), and reversionary processes 

such as Ornstein-Uhlenbeck. 

1.1. Geometric Brownian Motion (GBM) 

The GBM is the basic model for continuous-time price dynamics. Described by : 

𝒅𝑺𝒕 =  𝝁𝑺𝒕𝒅𝒕 +  𝝈𝑺𝒕𝒅𝑾𝒕 

where: 

• 𝑆𝑡 is the asset price at time ttt, 

• 𝜇 is the drift term (expected return rate), 

• 𝜎 is the volatility term (standard deviation of returns), 

• 𝑊𝑡 is a standard Brownian motion (Wiener process), 

• 𝑑𝑡 is an infinitesimal increment in time. 

it assumes lognormal returns, constant volatility and a continuous trajectory. It forms the basis 

of the Black-Scholes model (Black & Scholes, 1973) and is still used for option pricing, market 

scenario simulation and risk/return modeling in portfolio models. 

However, it fails to capture the sharp jumps and thick tails observed in reality. 

1.2.  Lévy and jump processes 

To model price discontinuities, Lévy processes generalize the GBM by incorporating both a 

continuous (Brownian) component and random jumps. They are characterized by their Lévy-

Khintchine function 𝜓   and include :  

𝑬[𝒆𝒕
𝒊𝒖𝑿] =  𝒆𝒕𝝍𝒖 

where the Lévy exponent ψ(u)\psi(u)ψ(u) has the form: 

𝝍(𝒖) = 𝒊𝒂𝒖 − 𝟏𝟐𝝈𝟐𝒖𝟐 + ∫ (𝒆𝒊𝒖𝒙 − 𝟏 − 𝒊𝒖𝒙𝟏∣𝒙∣<𝟏)𝝂(𝒅𝒙)
𝑹∖{𝟎}

. 

where: 

• 𝒂 ∈ 𝑹 is a drift term, 

• 𝝈 ≥ 𝟎  is the volatility of the Brownian component, 
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• 𝝂 is the Lévy measure that controls the jump intensity and jump size distribution; 

it satisfies ∫ (𝟏 ∧ 𝒙^𝟐)𝝂(𝒅𝒙) < ∞, 

• The integral term captures the jump behavior, with a compensation term 𝒊𝒖𝒙𝟏∣𝒙∣<𝟏 

for small jumps. 

- The compound Poisson process, 

- The Variance Gamma (VG) model (Madan & Seneta, 1990), 

- The CGMY process (Carr, Geman, Madan, & Yor, 2002), which allows flexibility in the shape 

of the distribution tails. 

These models offer a better empirical fit to financial return distributions, notably by capturing 

asymmetry and leptokurtia. 

1.3. Reversion process: Ornstein-Uhlenbeck 

The Ornstein-Uhlenbeck (OU) process is a stationary Gaussian diffusion, suitable for variables 

with a tendency to revert to a mean value (reversion): 

𝒅𝑿𝒕 =  𝜽(𝝁 − 𝑿𝒕), 𝒅𝒕 +  𝝈 𝒅𝑾𝒕 

where: 

• 𝑿𝒕 is the state variable at time ttt, 

• 𝜽 > 𝟎 is the speed of mean reversion, controlling how fast 𝑋𝑡 tends to return to the 

mean, 

• 𝝁 ∈ 𝑹  is the long-term mean level, 

• σ>0 is the volatility coefficient, 

• W_t is a standard Brownian motion. 

It is commonly used to model interest rates (Vasicek, 1977) , stochastic volatility (Heston, 1993) 

, and commodity prices. Unlike the GBM, the OR can model long-term stability, although it 

remains limited by its linearity and inability to handle jumps or multiplicative effects. 

Table 1: Comparative Summary of Stochastic Models in Financial Applications 

Model Kind Features Benefits Boundaries 

GBM 
Continuous 

broadcast 

Constant 

volatility, 

continuous 

trajectories 

Simplicity, 

analytical basis, 

positives 

Does not model 

jumps or thick 

tails 

Merton 

(jumps) 
Diffusion + Fish 

Rare jumps, 

parametric 

structure 

Capturing 

market shocks 

Complex 

calibration 
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Lévy process Generalization 

Broadcast + 

frequency 

hopping and 

various sizes 

High flexibility, 

empirical 

adequacy 

Numerical 

complexity and 

estimation 

Ornstein -

Uhlenbeck 
Mean reversion 

Linear model, 

return to 

equilibrium 

Realism on 

rates/volatility, 

stationarity 

Negativity 

possible, no 

jumps 

 

2. Stochastic optimization of investment decisions 

In an uncertain environment, dynamic portfolio management is based on principles derived 

from stochastic control, enabling allocation decisions to be optimized according to expected 

performance and risk incurred. This section summarizes the classical approaches: utility 

maximization, risk minimization, constraint integration and risk-adjusted performance 

evaluation. 

2.1. Maximizing expected utility 

Utility theory provides a fundamental framework in which the investor seeks to maximize: 

𝐦𝐚𝐱 
𝝅𝒕

𝔼[𝑼(𝑾𝑻)] 

where: 

• 𝑊𝑇 is the wealth at the terminal time T, 

• 𝝅𝒕 denotes the amount invested in the risky asset at time ttt, 

• U(⋅)  is the investor’s utility function reflecting risk preferences. 

•  Portfolio dynamics generally follow : 

𝒅𝑾𝒕 =  [ 𝒓 𝑾𝒕 +  𝝅𝒕(𝝁 −  𝒓)]𝒅𝒕 + 𝝅𝒕𝝈𝒅𝑾𝒕 

Common utility functions include : 

- Logarithmic: favors capital growth, 

- Exponential (CARA): constant risk tolerance, 

- CRRA (isoelastic): decreasing marginal return. 

Merton's (1971) solution for a CRRA investor gives: (Merton, 1971) 

𝝅∗ =
𝝁 − 𝒓

𝜸𝝈𝟐
 

This framework allows customization according to risk aversion, but is highly dependent on 

market parameters, which are often difficult to estimate. 
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2.2. Risk minimization (Markowitz approach) 

Markowitz (1952) proposes quadratic portfolio optimization: (Markowitz, 1952) 

𝐦𝐢𝐧
𝒘

  𝒘⊤ 𝜮𝒘    𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐  {
𝒘⊤ 𝝁 = 𝒓̅

𝒘⊤𝟏 = 𝟏
   ,     

where: 

• 𝒘 ∈ 𝑹𝒏 : vector of portfolio weights, 

• 𝝁 ∈ 𝑹𝒏 : vector of expected asset returns, 

• 𝜮 ∈ 𝑹𝒏×𝒏: covariance matrix of asset returns, 

• 𝒓̅ ∈ 𝑹: target expected return, 

• 𝟏 ∈ 𝑹𝒏: vector of ones (to enforce full investment). 

This approach is used to construct the efficient frontier: portfolios that maximize returns for a 

given level of risk. It remains a standard for ex ante risk analysis, although it : 

- Relies on precise estimation of μ and Σ, 

- Neglects asymmetries and extremes, 

- Does not distinguish between beneficial and harmful volatility. 

2.3.  Taking constraints into account 

In practice, the investor is subject to multiple constraints: 

- Budgetary: ∑𝒘𝒊 = 𝟏 , 

- Non-negativity: 𝒘𝒊 ≥ 𝟎 , 

- Sectors or regulatory limits, 

- Liquidity and position size. 

These constraints transform optimization into constrained quadratic problems, solved by 

numerical methods (simplex, interior points, convex optimization). (Boyd & Vandenberghe, 

2004) 

2.4. Risk-adjusted performance measures 

The evaluation of a strategy is not based solely on absolute return, but on its effectiveness 

relative to the risk taken. Several indicators are used (Sharpe, 1966): 

- Sharpe ratio : 

𝑺 =
𝑹𝒑 − 𝑹𝒇

𝝈𝒑
  

where: 

•  𝑹𝒑 : expected return of the portfolio 
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• 𝑹𝒇 : risk-free rate 

• 𝝈𝒑 : standard deviation of portfolio returns (total volatility) 

- Treynor's ratio (systematic risk via beta), 

- Jensen's Alpha: measures outperformance relative to the CAPM model, 

- Sortino's ratio: only takes negative volatility into account. 

These indicators are key to objectively comparing several portfolios, taking into account the 

risks involved. 

Table 2: Visual Summary of Portfolio Optimization Approaches 

Approach Objective Benefits Boundaries 

Expected 

utility 

Maximize expected 

satisfaction 

Personalization, rigorous 

framework 

Strong reliance on 

assumptions 

Variance 

minimization 
Reduce total risk 

Simplicity, standard 

framework 

Neglects asymmetry 

and extremes 

Allocation 

constraints 

Reflect actual 

restrictions 
Operational realism 

Increase in digital 

complexity 

Risk-adjusted 

ratios 

Normalized 

comparison 
Easy to interpret 

Do not cover all 

aspects of real risk 

3.  Applications of stochastic control to money management 

Stochastic control provides a rigorous framework for dynamic portfolio management. It allows 

us to model the uncertainty of financial markets while optimizing decisions in continuous time. 

This section summarizes its most striking operational applications. 

3.1.  Dynamic rebalancing 

Rebalancing consists in periodically adjusting the composition of a portfolio to maintain a target 

allocation. In a stochastic framework, this strategy aims to minimize deviations from the target 

while controlling transaction costs: (Davis & Norman, 1990) 

𝐦𝐢𝐧
𝒘𝒕

𝑬 [∫ (∥ 𝒘𝒕 − 𝒘∗ ∥𝟐+ 𝑪(𝒘𝒕, 𝒘𝒕−)) 𝒅𝒕
𝑻

𝟎

] 

where: 

• 𝑤𝑡  is the portfolio allocation at time ttt, 

• 𝑤∗ is the target (optimal or benchmark) allocation, 

• 𝑪(𝒘𝒕, 𝒘 𝒕−)  represents transaction costs incurred from adjusting positions, 

• ∥  𝒘𝒕 − 𝒘∗ ∥𝟐 penalizes deviation from the target, 

• 𝑾 𝒕− is the allocation just before time t (left limit, to capture jumps or discrete 

adjustments). 
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Approaches such as that of Davis & Norman (1990) integrate these constraints into a dynamic 

programming formulation, leading to an optimal strategy that takes into account both market 

fluctuations and operational costs. 

3.2.  Arbitrage strategies 

Stochastic control makes it possible to formalize and optimize arbitrage strategies, which 

exploit temporary price inefficiencies: (Bellman, 1957) 

𝒎𝒂𝒙 𝐦𝐚𝐱
𝝅𝒕

𝑬 [∫ 𝝅𝒕
⊤𝒅𝑺𝒕

𝑻

𝟎

− 𝑪𝒐𝒖̂𝒕𝒔(𝝅𝒕)] 

where: 

• 𝜋𝑡 vector of positions (e.g., long/short in various assets), 

• 𝑺𝒕 : price process of the assets involved, 

• 𝑪𝒐û𝒕𝒔(𝝅𝒕) : function capturing trading frictions (e.g., impact, commissions, slippage), 

 

These techniques apply to statistical, inter-market or volatility arbitrage. The Hamilton-Jacobi-

Bellman (HJB) equation helps determine the optimal policy in the presence of execution costs 

and risks. 

3.3.  Dynamic programming in finance 

Dynamic programming is based on Bellman's (1957) optimality principle. It solves portfolio 

problems by modeling the value function V(t,x)V(t, x)V(t,x) through the equation HJB : 

(Bellman, 1957) 

𝝏𝑽

𝝏𝒕
+ 𝐬𝐮𝐩

𝝅
{𝑳𝝅𝑽 + 𝒇(𝒕, 𝒙, 𝝅)} = 𝟎 

where: 

• 𝝅 : control variable (e.g., investment strategy), 

• 𝑳𝝅 : infinitesimal generator of the controlled stochastic process (includes drift and 

diffusion terms), 

• 𝒇(𝒕, 𝒙, 𝝅) : running cost or utility function (e.g., consumption, arbitrage gain), 

• 𝑽(𝑻, 𝒙) = 𝒈(𝒙)  : terminal condition, often representing utility from terminal wealth. 

This approach is suitable for both portfolio management and dynamic hedging, but often 

requires numerical resolutions (finite differences, Monte Carlo). 
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3.4. Strategic interactions: Game theory 

Stochastic game theory models interactions between several investors whose strategies 

influence each other. It is useful for : (Basar & Olsder, 1999) 

- Representing competition between institutional players, 

- Study market strategies in an uncertain environment, 

- Formalize collective bargaining or hedging situations. 

Stochastic Nash equilibria are deduced from coupled HJB systems. 

3.5. Hedging and risk management 

Dynamic hedging techniques (delta, gamma, vega hedging) can be optimized via stochastic 

control. The aim is to minimize exposure to residual risk while taking into account readjustment 

costs. (Hull, 2012) 

These strategies can be applied to 

- Foreign exchange risk management, 

- Protection of bond portfolios, 

- Exotic options. 

Table 3: Summary of Advanced Applications of Stochastic Control in Finance 

Application Objective Benefits Boundaries 

Rebalancing 
Maintaining the target 

allocation 

Dynamics, cost 

management 

Complexity, 

transaction costs 

Arbitration 
Exploiting market 

inefficiencies 

Opportunistic 

profitability, rigorous 

framework 

Calibration, slippage 

Dynamic 

programming 
Sequential optimization 

Adaptive strategies, 

theoretical robustness 

Numerical difficulty 

in high dimension 

Game theory 
Anticipation of 

competing behaviors 

Models competition and 

cooperation 

Complex HJB 

systems, strong 

assumptions 

 

4. Portfolio management models and practices 

Modern portfolio management is based on rigorous optimization models, integrating the notion 

of diversification, dynamic capital management and differentiated strategies according to 

performance objectives. This section presents three key approaches: the Markowitz model, 

Kelly's strategy, and the debate between active and passive management. 
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4.1.  The Markowitz model and efficient diversification 

The Markowitz model (1952) is the foundation of modern portfolio theory. It proposes 

optimizing the composition of a portfolio by minimizing its variance for a given expected 

return, thereby tracing the efficient frontier of non-dominated portfolios. 

Formally : (Markowitz, 1952) 

𝐦𝐢𝐧
𝒘

  𝒘⊤ 𝜮𝒘    𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐  {
𝒘⊤ 𝝁 = 𝒓̅

𝒘⊤𝟏 = 𝟏
   ,     

This theoretical framework shows that diversification - the combination of weakly or negatively 

correlated assets - reduces specific risk, thus improving the risk/return trade-off. 

Limitations : 

- Assumption of normality of returns, 

- Highly sensitive to errors in estimating μ\muμ and Σ\SigmaΣ, 

- Solutions sometimes unstable. 

Extensions such as CAPM, robust models and Bayesian methods have been proposed to remedy 

these shortcomings. 

4.2. Kelly's strategy: Optimum logarithmic growth 

Kelly's (1956) formula proposes maximizing the expectation of logarithmic capital growth, 

with a view to long-term performance: 

𝐦𝐚𝐱
𝐟

𝐄 [𝐥𝐨𝐠(𝐖𝐓)] 

where 𝒇 is the fraction of capital invested, and 𝑾𝑻is terminal wealth. Under simple probabilistic 

returns (e.g., a binary gamble), the formula yields the fraction 𝒇∗ of capital to bet: 

𝒇∗ =
𝒑⋅𝒃−𝒒

𝒃
, 

where: 

• 𝑷 : probability of winning, 

• 𝒒 = 𝟏 − 𝒑, 

• 𝒃: payout ratio (gain per unit bet). 

 

It provides an optimal allocation of capital based on probability of gain and expected returns. 

In a multi-asset context, we seek to maximize 𝑬[𝐥𝐨𝐠(𝒘⊤𝑹)] 

under budgetary constraint. (Kelly, 1956) 

Advantages: 

- Asymptotically optimal strategy, 
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- Highly consistent with a long-term objective, 

- Suitable for algorithmic trading or systematic management. 

Limitations: 

- Extremely sensitive to estimation errors, 

- Risk of overoptimization in the event of overestimation of return or underestimation of risk. 

Variants such as the Kelly fractional are used to reduce volatility. 

4.3. Active vs. passive management: complementary approaches 

There are two opposing philosophies in portfolio management: 

Passive management 

- Objective: replicate an index (e.g. S&P 500), 

- Advantages: low fees, transparency, market efficiency, 

- Limitations: no outperformance, blind exposure to all market phases. 

Active management 

- Objective: generate alpha by exploiting market inefficiencies, 

- Advantages: flexibility, adaptability, 

- Limitations: high costs, uncertain results, need for constant expertise. 

Hybrid strategies 

Many managers adopt a mixed approach, combining : 

- A passive core for broad market exposure, 

- An active pocket targeting specific opportunities. 

This approach balances stability, cost and personalization. (Fama & French, 2010) 

Table 4: Visual Synthesis of Portfolio Allocation and Management Strategies 

Approach Objective Benefits Boundaries 

Markowitz 
Minimize risk for 

return 

Diversification, 

analytical framework 

Sensitive estimate, 

strong assumptions 

Kelly 
Maximize 

logarithmic growth 

Long-term 

performance, 

probabilistic rigor 

Over-optimization, high 

potential volatility 

Passive 

management 

Replicate the market 

at lower cost 
Low costs, simplicity 

No control or 

overperformance 

possible 

Active 

management 

Beat the market by 

selection 

Adaptability, potential 

alpha generation 

High costs, uncertainty 

of results 
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4.4. Visual Overview of Stochastic Control in Financial Optimization 

To enhance understanding of the stochastic control framework applied to portfolio 

optimization, we present a schematic representation of the key steps involved in the process. 

This diagram provides a conceptual flow from the mathematical modeling of asset dynamics 

to the determination of optimal investment strategies via dynamic programming techniques. 

 

Figure 1 : Stochastic Control Flow in Financial Optimization 

This flowchart illustrates the essential stages of the stochastic control process: starting with 

market modeling (Brownian motion, jump processes), then defining the objective function (e.g., 

expected utility, risk minimization), formulating the control problem (e.g., via the Hamilton-

Jacobi-Bellman equation), and finally solving for the optimal policy using analytical or 

numerical methods. 

This structure supports the formulation of investment strategies that are not static but 

dynamically adjusted over time, reflecting changes in market states and investor preferences. 

The flowchart emphasizes the recursive nature of stochastic decision-making and the central 

role of the value function in capturing future expectations and risks. 

4.5. Numerical Illustration: Simulated Wealth Paths under Merton's Optimal Strategy 

To concretely illustrate the application of stochastic control in portfolio optimization, we 

simulate the evolution of investor wealth under Merton’s optimal allocation strategy. This 
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classical model, based on maximizing expected utility under constant relative risk aversion 

(CRRA), yields a closed-form expression for the optimal proportion of wealth to be invested in 

the risky asset: 

𝝅∗ =
𝝁 − 𝒓

𝜸𝝈𝟐
  

Parameters Used: 

• 𝜇 = 8 %: Expected return of the risky asset 

• 𝑟 = 2% : Risk-free rate 

• 𝜎 = 15% : Volatility of the risky asset 

• 𝛾 = 3 : Risk aversion coefficient 

• 𝑇 = 1 : Investment horizon (1 year) 

• 𝑊0 =  1 : Initial wealth 

• 𝛥𝑡 = 1/252 : Daily steps (252 trading days) 

Python Simulation Code: 

import numpy as np 

import matplotlib.pyplot as plt 

 Parameters 

mu, r, sigma, gamma = 0.08, 0.02, 0.15, 3 

pi_star = (mu - r) / (gamma * sigma**2) 

W0, T, N = 1, 1.0, 252 

dt = T / N 

n_paths = 10 

 Simulation 

np.random.seed(42) 

time_grid = np.linspace(0, T, N) 

trajectories = np.zeros((n_paths, N)) 

trajectories[:, 0] = W0 

for i in range(n_paths): 

    for t in range(1, N): 

        dWt = np.random.normal(0, np.sqrt(dt)) 

        drift = (r + pi_star * (mu - r)) * trajectories[i, t-1] 

        diffusion = pi_star * sigma * trajectories[i, t-1] * dWt 

        trajectories[i, t] = trajectories[i, t-1] + drift * dt + diffusion 
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  Plot 

plt.figure(figsize=(10, 6)) 

for i in range(n_paths): 

    plt.plot(time_grid, trajectories[i]) 

plt.title("Simulated Wealth Trajectories $W_t$ under Merton's Optimal Strategy") 

plt.xlabel("Time (years)") 

plt.ylabel("Wealth $W_t$") 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

Figure 2 : Simulated Wealth Trajectories 𝑾𝒕 under Merton's Optimal Strategy. 

Interpretation: 

The plot shows 10 simulated paths of investor wealth over one year, assuming the investor 

follows the constant optimal allocation 𝜋∗ derived from Merton's formula. Although the initial 

wealth is the same across all paths, the randomness inherent in the market (modeled as a 

Brownian motion) leads to divergence in final outcomes. The trajectories remain upward-

trending on average, reflecting the positive expected return, but they also exhibit variability due 

to market volatility. 

This simulation helps validate theoretical results and provides an intuitive understanding of the 

dynamic behavior of wealth under optimal stochastic control strategies. 
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This simulation illustrates a basic yet operational implementation of Merton's optimal strategy 

using Python. The full source code, included above, provides a practical framework for testing 

stochastic control models under different assumptions and can be extended to include 

transaction costs, constraints, or multi-asset settings. 

5. Sensitivity analysis in financial optimization 

Sensitivity analysis is a critical tool in assessing the robustness of money management strategies 

optimized by stochastic control. It measures the impact of uncertainties in input parameters - 

such as expected returns, volatility or correlations - on allocation decisions. 

5.1. Objectives 

- Assess the robustness of portfolios to estimation errors, 

- Identify parameters influencing performance or risk, 

- Quantify model risk, 

- Adapt strategies to market shocks. (Fabozzi et al., 2007) 

5.2. Classical methods 

- Partial derivatives: calculation of  
𝝏𝒇

𝝏𝜽
  to estimate the marginal sensitivity of an objective 

function (utility, variance) to a parameter. (Meucci, 2005) 

- Cross-sensitivities: 
𝝏𝟐𝒇

𝝏𝜽𝒊𝝏𝜽𝒋 
 , to assess non-linear interactions. (Glasserman, 2004) 

- Parametric scenarios: ±10 to ±30% variation of key parameters to observe the effect on 

portfolio composition, Sharpe ratio or VaR. 

5.3. Practical applications 

- Stress testing: analysis of portfolios under extreme conditions (crisis, high volatility, interest-

rate shocks). 

- Robust backtesting: comparison of several model calibrations on historical data. 

- Optimization under uncertainty: integration of sensitivity penalties in the objective function 

(so-called “robust” approach). 

5.4. Limitations 

- Approach often local, sensitive to assumed linearity around the optimum point. 

- High computational cost for high-dimensional models. 

- Results dependent on the method used (analytical differentiation vs. Monte Carlo 

simulation).19 
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6. Case studies : Practical applications of stochastic control 

Stochastic control has many applications in asset management, in contexts as varied as pension 

funds, commodity trading and algorithmic investment. These cases illustrate the theoretical 

framework's ability to adapt to specific constraints and practical objectives. 

6.1. Pension Funds: Long-Term Stability under Constraints 

Pension funds are a key example of long-term asset management, where the challenge lies in 

ensuring the sustainability of future benefit payments while operating under strict regulatory 

frameworks and macroeconomic uncertainty. Their primary goal is to secure liabilities over 

extended horizons, while maintaining a controlled level of portfolio volatility and 

intergenerational equity. 

Objectives 

The central objective is to maximize the probability of fulfilling future liabilities while 

minimizing the intertemporal volatility of net assets. This must be achieved within regulatory 

allocation constraints (e.g., Solvency II) and amid uncertainties surrounding interest rates, 

inflation, and financial returns. 

Methodology 

Modern pension fund management is built on a quantitative architecture combining: 

• Stochastic modeling of wealth 𝑊𝑡, integrating asset returns and liability cash flows 

(contributions, benefit payments); 

• Liability-Driven Investment (LDI) strategies, which aim to align asset dynamics with 

actuarial liabilities; 

• Adaptive rebalancing policies, adjusting the portfolio dynamically based on the funding 

ratio and market conditions, often modeled using stochastic control techniques. 
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Figure 3 : Typical Strategic Asset Allocation of a Pension Fund  

The pie chart shows a typical long-term allocation strategy for a defined benefit pension fund: 

60% in equities, 30% in fixed-income securities (bonds), and 10% in alternative assets such as 

real estate, infrastructure, or private equity. 

This allocation aims to diversify return sources while ensuring long-term actuarial balance. 

Bonds are used to hedge liability cash flows, equities provide long-term risk premia, and 

alternative assets help smooth returns across market cycles. 

Strategic Interpretation 

This allocation reflects a robust diversification strategy based on the principles of stochastic 

optimization: 

• Equity exposure captures long-term growth potential and risk premia needed to meet future 

obligations. 

• Bond holdings serve to stabilize portfolio returns and align with predictable liability 

outflows. 

• Alternatives introduce resilience and diversification, with return streams often decorrelated 

from traditional markets. 

Practical Case Study 

A pension fund with a 30-year investment horizon increased its equity allocation from 50% to 

70% to capture higher expected returns. Simultaneously, it implemented put option overlays to 

hedge downside risk, within a stochastic dynamic management framework. This strategy 
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exemplifies the application of adaptive money management, combining return optimization and 

active risk mitigation. 

6.2. Integrated Risk Hedging in a Commodity Trading Firm 

Commodity trading companies—whether in energy, metals, or agricultural products—operate 

in markets characterized by high price volatility, logistical cost fluctuations, and foreign 

exchange risks. In this context, the implementation of integrated hedging strategies constitutes 

a concrete application of stochastic control in risk management (Geman, 2005) . 

Objective 

The primary objective is to stabilize profit margins while dynamically managing both physical 

and financial positions. This ensures operational resilience and secures long-term profitability 

amid unstable market conditions(Lucia & Schwartz, 2002) . 

Methodology: Stochastic Modeling and Hedging Strategies 

The hedging strategy relies on three methodological pillars: 

• Stochastic price modeling, using mean-reverting processes such as the Ornstein-Uhlenbeck 

process (Geman, 2005), or jump processes like Lévy models, which better capture market 

discontinuities frequently observed in commodity markets (Eydeland & Wolyniec, 2003). 

• Use of derivative instruments such as futures, options, and commodity swaps, which allow 

companies to lock in future prices or exchange fixed and floating cash flows indexed to 

commodity prices (Lucia & Schwartz, 2002) . 

• Stochastic optimization of expected margin, adjusted for logistical costs and price forecasts, 

implemented within an optimal control framework under uncertainty  (Eydeland & 

Wolyniec, 2003) . 

Results and Benefits 

The implementation of these techniques yields several measurable benefits: 

• A significant reduction in the volatility of financial results, improving earnings 

predictability (Geman, 2005)  ; 

• Enhanced logistical allocation, thanks to the integration of price forecasts in storage and 

shipment decisions (Lucia & Schwartz, 2002); 
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• Preserved operational solvency, a critical factor in capital-intensive and shock-sensitive 

markets (Eydeland & Wolyniec, 2003) . 

Perspectives 

This case demonstrates that stochastic control applied to commodity price risk management 

represents a strategic advantage for trading firms. It also opens up avenues for future research 

in: 

• Incorporating complex regulatory constraints, 

• Integrating exogenous macroeconomic signals, 

• Exploring hybrid models combining machine learning and traditional stochastic methods. 

6.3. Algorithmic Investment: Adaptive and Automated Optimization 

Algorithmic investment refers to the use of mathematical models, artificial intelligence, and 

computational techniques to automate portfolio decisions and trading strategies. As financial 

markets grow increasingly complex and data-driven, algorithmic methods offer an efficient and 

scalable framework for responding to market dynamics in real time. 

Objectives 

The primary goal is to maximize risk-adjusted performance by automating decisions that are 

traditionally influenced by human biases, while reacting rapidly to evolving market conditions. 

Methodological Framework 

Algorithmic strategies are typically grounded in: 

• Markov Decision Processes (MDP) and optimal stochastic control formulations for 

sequential decision-making; 

• Stochastic models incorporating diffusion, jumps, or reinforcement learning (RL) to adapt 

to nonlinear and high-frequency dynamics; 

• Implementation in quantitative trading, including statistical arbitrage, market making, and 

momentum-based execution strategies. 

Key Strategy Types 

• High-Frequency Trading (HFT): Leverages ultra-low latency infrastructure to exploit 

micro-inefficiencies in market pricing. Algorithms react in milliseconds to real-time order 

book data and execute trades to capture small yet frequent profits. 
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• Momentum Strategies: Identify and follow market trends by taking long positions on 

outperforming assets and short positions on underperformers. These strategies rely on 

technical indicators and are designed to capitalize on investor behavior and price 

persistence. 

• Statistical Arbitrage: Exploits temporary pricing anomalies between correlated assets. 

Sophisticated models identify deviations from historical price relationships and execute 

paired trades to profit from mean reversion. 

 

Figure 4 – Performance Curve of an Algorithmic Trading Strategy 

The comparative performance of an algorithmically managed portfolio versus a benchmark 

index. The strategy uses real-time data and automated decision-making to deliver superior risk-

adjusted returns. 

Case Study 

A quantitative investment fund deployed a machine learning-based trading model to forecast 

stock price movements. The model integrates thousands of features including financial 

indicators, macroeconomic news, and social media sentiment. By executing real-time trades 

based on model outputs, the fund consistently outperformed market benchmarks. This 

illustrates the transformative power of artificial intelligence in modern investment management, 

particularly in the processing of unstructured data and adaptive portfolio allocation. 
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6.4. Regulatory and ESG Implications in Stochastic Control-Based Asset Management 

The application of stochastic control in money management increasingly intersects with 

growing regulatory oversight and the integration of Environmental, Social, and Governance 

(ESG) considerations. These dimensions are crucial for aligning advanced financial strategies 

with evolving compliance norms and sustainability objectives. 

6.4.1. Regulatory Considerations in Algorithmic and Dynamic Trading 

Financial regulators worldwide—such as the SEC (USA), ESMA (EU), and AMMC 

(Morocco)—have introduced frameworks that govern automated trading practices, capital 

requirements, and risk exposure disclosure. In the context of stochastic control, especially in 

high-frequency or dynamically rebalanced portfolios, several key regulatory aspects must be 

considered: 

• Transparency and Explainability: Regulators increasingly require that algorithmic trading 

systems provide auditable logic. This challenges the use of complex models (e.g., 

reinforcement learning or deep stochastic control) whose decisions may lack 

interpretability. 

• Stress Testing and Capital Adequacy: Models must include robust sensitivity analysis and 

stress testing, aligned with Basel III requirements and local regulations. Stochastic 

simulations provide tools for demonstrating capital resilience under extreme market 

conditions. 

• Latency and Market Abuse: Controls must be in place to prevent market manipulation and 

ensure fair access. This affects how high-frequency implementations of stochastic 

optimization can be deployed. 

 

6.4.2. ESG Integration into Stochastic Optimization 

ESG investing is no longer a niche practice but a systemic requirement in portfolio 

management. Institutions are expected to demonstrate that their investment decisions account 

for ESG-related risks and impacts. In the stochastic control framework, this translates into: 

• Objective Function Adjustment: Utility functions or cost functions can incorporate ESG 

penalties or scores, influencing optimal asset allocation. For example, portfolios can be 

penalized for allocating capital to low-rated ESG sectors. 

http://www.ijemsjournal.com/


International Journal of Economics and Management Sciences 
Volume 4, Issue 2 (2025), pp. 45-70 

ISSN 2823-9350 

 

67 
www.ijemsjournal.com 

• Constraint-Based Formulation: ESG guidelines can be introduced as hard constraints (e.g., 

minimum percentage of assets in sustainable bonds) or soft preferences within optimization 

models. 

• Scenario Generation and ESG Stress Testing: Stochastic models can simulate climate risk, 

regulatory transition scenarios, or carbon pricing shocks to test portfolio sustainability and 

robustness. 

Illustrative Example 

Let 𝜋𝑡 be the vector of dynamic allocations across assets, and 𝐸𝑆𝐺𝑡 be the vector of ESG scores. 

A modified stochastic control objective could be: 

𝐦𝐚𝐱
𝝅𝒕

𝑬 [∫ 𝑼(𝑾𝒕)
𝑻

𝟎

− 𝝀 ⋅ 𝑷𝒆𝒏𝒂𝒍𝒕𝒚𝑬𝑺𝑮(𝝅𝒕, 𝑬𝑺𝑮𝒕) 𝒅𝒕]   

 

where 𝝀  reflects the investor's 𝐸𝑆𝐺 sensitivity, and 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝑆𝐺 quantifies 𝐸𝑆𝐺 

underperformance. 

Integrating regulatory constraints and ESG factors into stochastic control frameworks ensures 

that money management strategies are not only quantitatively robust but also compliant and 

socially responsible. These dimensions are essential for institutional acceptance and long-term 

investment legitimacy. 

Conclusion 

The convergence of money management and stochastic control provides a particularly robust 

theoretical and operational framework for portfolio management in uncertain environments. By 

integrating probabilistic modeling of market dynamics - whether Brownian motion, jump 

processes or Lévy models - with dynamic optimization techniques (stochastic programming, 

Hamilton-Jacobi-Bellman equations, game theory), it becomes possible to develop robust, 

adaptive and mathematically sound investment strategies. 

The tools developed in this work - from expected utility maximization to risk minimization, via 

constraint management, Bayesian approaches, or risk-adjusted performance measures - provide 

investors with a rigorous basis for informed, proactive asset allocation, capable of better 

anticipating market hazards and managing risk structurally. 

This approach has demonstrated its operational relevance in a number of practical contexts: 

- Pension funds, where securing long-term commitments is paramount, 

- Commodities trading companies, faced with extreme volatility and logistical constraints, 

- Algorithmic investing, where speed, adaptability and automation are essential. 
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Admittedly, there are still limitations - not least the dependence on modeled assumptions, the 

complexity of implementation, and the challenges of model calibration. However, the prospects 

opened up by the integration of advanced technologies, such as reinforcement learning, hybrid 

models combining artificial intelligence and finance, or the integration of ESG criteria into 

optimization functions, suggest the emergence of a more efficient, resilient and responsible 

finance. 

Admittedly, there are still limitations — not least the dependence on modeled assumptions, the 

complexity of implementation, and the challenges of model calibration. However, the prospects 

opened up by the integration of advanced technologies, such as reinforcement learning, hybrid 

models combining artificial intelligence and finance, or the integration of ESG criteria into 

optimization functions, suggest the emergence of a more efficient, resilient, and responsible 

finance. 

In this context, the increasing regulatory scrutiny surrounding algorithmic trading and risk 

transparency, as well as the growing demand for ESG-integrated strategies, highlight the need 

to align mathematical models with broader societal and compliance expectations. Stochastic 

control offers the flexibility to incorporate such multi-dimensional constraints, enabling asset 

managers to meet both performance goals and responsible investment standards. 

 

This work thus lays the methodological foundations for rethinking classic capital and risk 

management paradigms, in an era of systemic complexity, digitalization, and sustainability 

imperatives. 
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